domingo

RELATIVIDAD ESPECIAL

Los postulados de la relatividad especial son dos. El primero afirma que todo movimiento es relativo a cualquier otra cosa, y por lo tanto el éter, que se había considerado durante todo el siglo XIX como medio propagador de la luz y como la única cosa absolutamente firme del Universo, con movimiento absoluto y no determinable, quedaba fuera de lugar en la física, que no necesitaba de un concepto semejante (el cual, además, no podía determinarse por ningún experimento).
El segundo postulado afirma que la velocidad de la luz es siempre constante con respecto a cualquier observador. De sus premisas teóricas obtuvo una serie de ecuaciones que tuvieron consecuencias importantes e incluso algunas desconcertantes, como el aumento de la masa con la velocidad. Uno de sus resultados más importantes fue la equivalencia entre masa y energía, según la conocida fórmula E=mc², en la que c es la velocidad de la luz y E representa la energía obtenible por un cuerpo de masa m cuando toda su masa sea convertida en energía.
Dicha equivalencia entre masa y energía fue demostrada en el laboratorio en el año 1932, y dio lugar a impresionantes aplicaciones concretas en el campo de la física (tanto la fisión nuclear como la fusión termonuclear son procesos en los que una parte de la masa de los átomos se transforma en energía). Los aceleradores de partículas donde se obtiene un incremento de masa son un ejemplo experimental clarísimo de la teoría de la relatividad especial.
La teoría también establece que en un sistema en movimiento con respecto a un observador se verifica una dilatación del tiempo; esto se ilustra claramente con la famosa paradoja de los gemelos: "imaginemos a dos gemelos de veinte años, y que uno permaneciera en la Tierra y el otro partiera en una astronave, tan veloz como la luz, hacia una meta distante treinta años luz de la Tierra; al volver la astronave, para el gemelo que se quedó en la Tierra habrían pasado sesenta años; en cambio, para el otro sólo unos pocos días".
En el siguiente video, Albert Einstein concluye una de sus clases de Física teórica con la célebre fórmula de la correspondencia entre la masa y la energía. Ni siquiera él mismo creía en las aplicaciones prácticas de la sugestiva fórmula.

sábado

LA HIPOTESIS DE AVOGADRO


Si tomamos dos o más gases, cualquiera que éstos sean, y los confinamos en otros tantos recipientes, todos ellos de igual volumen, y los mantenemos en iguales condiciones de temperatura y presión, el número de moléculas en todos esos gases es el mismo. Ésta es la famosa hipótesis de Avogadro, introducida por el físico italiano Amedeo Avogadro en 1811 con el objeto de intentar explicar un hecho experimental obtenido por otro físico, el francés Joseph Gay-Lussac, tres años antes.

Sobre la base de experimentos muy cuidadosos, Gay-Lussac concluyó que si dos o más gases reaccionan químicamente entre sí, los volúmenes de los gases reactivos y los gases productos están relacionados entre sí por números enteros simples. Por ejemplo, si descomponemos vapor de agua en sus constituyentes, hidrógeno y oxígeno, el volumen ocupado por el hidrógeno es precisamente el doble que el ocupado por el oxígeno. Si hacemos reaccionar nitrógeno y oxígeno para formar el óxido nítrico, un gas incoloro, un volumen de oxígeno y un volumen de nitrógeno producen dos volúmenes de óxido nítrico.
Un átomo gramo de cualquier elemento contiene el mismo número de átomos que un átomo gramo de cualquier otro elemento. Este número es una constante de la naturaleza conocido como el número de Avogadro (No) cuyo valor se estima en:
No = 6.02 x 10 23 átomos/átomo gramo


ATOMOS

Un átomo está formado por un núcleo central y una corteza compuesta por órbitas. El núcleo de cada elemento químico contiene una determinada cantidad fija de partículas denominadas “protones”, con carga eléctrica positiva, e igual cantidad de otras partículas denominadas “neutrones”, con carga eléctrica neutra.
La suma total de protones presentes en el núcleo representa el número atómico que le corresponde a cada átomo en particular, lo que le confiere, a su vez, propiedades físicas y químicas diferentes al resto de los otros elementos contenidos en la Tabla Periódica.
Cada sustancia química o elemento, además del número atómico propio que lo identifica y caracteriza, posee también peso atómico y un nombre común. Es decir, cualquier átomo de un elemento que contenga, por ejemplo, un solo protón en su núcleo, será identificado siempre como un átomo de hidrógeno (H); si contiene 8 protones el elemento será oxígeno (O), mientras que si contiene 29 protones el elemento será identificado como cobre (Cu).
Datos de interés acerca del átomo:
Diámetro de un átomo: 10–8 cm
Diámetro de un electrón: 10–13 cm
Peso de la masa del electrón: 9,1 x 10–28 g
Peso de la masa del protón: 1 673 x 10–23 g
Peso de la masa del neutrón 1 673 x 10–23 g
Carga eléctrica del electrón: – 1 602 x 10–10 Coulomb
Carga eléctrica del protón: + 1 602 x 10–10 Coulomb

viernes

TODO ES QUIMICA

La contemplación de la naturaleza nos produce sensaciones de admiración y de sorpresa difíciles de describir. ¿Cómo se puede explicar la belleza de un paisaje o el prodigioso fenómeno de la vida? Pero si se da un paso más y se analiza más allá de lo que simplemente observamos, se descubre la esmerada ordenación de los átomos en el mundo mineral y la diversidad y complejidad de las reacciones químicas en los organismos vivos.
Los átomos, las moléculas y los compuestos químicos son los auténticos protagonistas de la naturaleza, de nuestro cuerpo y de nuestro entorno. La química constituye la base de las condiciones de vida hoy, pero también del futuro