jueves

CIENCIA EN INTERSTELLAR

Interstellar no es una película perfecta, aunque su guión, nos gusté más o menos, es bastante redondo. Tampoco es un gran documental sobre el espacio. La ciencia y tecnología de Interstellar tiene fallos. Muchos. Pero lo más importante es su mensaje.

Esta película es la mejor excusa posible, ahora mismo, para hablar de relatividad general, dilatación temporal, agujeros negros y paradojas asociadas a viajes en el tiempo. El famoso físico relativista Kip Thorne colaboró en la versión original del guión (y hace un cameo virtual como robot KIPP). Muchos aspectos de la física de la película son correctos, no en balde está detrás de ellos el genial Thorne. Sin embargo, también hay otros aspectos que, en mi opinión, son concesiones al guión para hacer la historia más efectista.

La mejor manera de explicar la teoría general de la relatividad, la teoría de la gravedad de Einstein, es usar la dilatación del tiempo gravitatoria. Conforme la intensidad del campo gravitatorio crece, el tiempo corre más lento. Los satélites del GPS tienen relojes atómicos que van más rápido que los que se encuentran en la superficie; se requiere usar una corrección relativista que compense dicho efecto gravitatorio. Este efecto es clave en la trama del guión de Interstellar, por ello es una película ideal para recomendar a los alumnos de cursos de relatividad general. Interstellar nos propone un futuro similar al dust bowl que azotó los EEUU entre 1932 y 1939. “Uno de los peores desastres ecológicos del siglo XX. Una sequía que afectó a las llanuras y praderas desde el Golfo de México hasta Canadá. El suelo, despojado de humedad, era levantado por el viento en grandes nubes de polvo y arena tan espesas que escondían el Sol (las llamadas ‘ventiscas negras’ o ‘viento negro’).” Para más inri, la película afirma que hay múltiples plagas que afectan a los cultivos de cereales, similares a la plaga de los heterocontos “que asolaron los cultivos de patata en Irlanda en el siglo XIX produciendo una gran hambruna.” La película no ofrece detalles biológicos de estas plagas, que yo pueda recordar. La humanidad no tiene futuro, pero Ellos nos regalan un futuro (si no, no habría película). Ellos viven en un espacio tiempo de cinco dimensiones paralelo a nuestro espacio tiempo de cuatro dimensiones (recuerda que Ellos son los guionistas, que viven en un espacio tridimensional, cuando la película es un espacio bidimensional). Ellos han creado un agujero de gusano que conecta nuestra galaxia con otra galaxia (no sabemos si de nuestro universo o de algún otro universo paralelo).

El punto de entrada está en las cercanías de Saturno (claro homenaje a 2001: Una odisea en el espacio de Arthur C. Clarke y Stanley Kubrick). El punto de salida está en un sistema planetario con siete planetas en órbita alrededor de un agujero negro supermasivo. Nuestros protagonistas sólo visitarán tres de ellos, llamados Miller, Edmunds y Mann. Ellos (que en la película viven en cinco dimensiones) incitan al alter ego de Kip Thorne, el profesor Brand interpretado por Michael Caine, a proponer una misión espacial a dicho sistema planetario en busca de un planeta habitable que regale un futuro a la humanidad (en alguno de los tres planetas Miller, Edmunds y Mann, ¿pero en cuál?). Cooper (Matthew McConaughey), el protagonista, debe abandonar entre lágrimas a su hija Murph (una broma con la ley de Murphy); ella se quedará en la Tierra y acabará siendo una famosa física teórica, completando el trabajo iniciado por el profesor Brand (en última instancia una teoría cuántica de la gravedad). Los agujeros de gusano que se pueden atravesar son física altamente especulativa, pero Ellos pueden violar la física y hacerlos realidad. No comentaré más sobre este asunto, pues no hay física en el viaje por el agujero de gusano, solamente licencias literarias.

Todo lo que ves en la película durante el viaje es puro espectáculo. Sin embargo, la entrada del agujero de gusano cerca de Saturno es muy realista (similar a una esfera transparente que refracta las estrellas del fondo). Las imágenes del agujero negro (llamado Gargantúa) muestran su disco de acreción de forma bastante realista (recomiendo leer a Héctor Vives, “El agujero negro de Interstellar,” Critical Thinking, 01 Ago 2014). Sin embargo, no son del todo realistas porque omiten algunos elementos clave. No se ve la fuente de la materia del disco de acreción. No se ha simulado en detalle la magnetohidrodinámica del disco de acreción, la emisión de radiación (rayos X y rayos gamma), que producirían brillos que deberían quedar congelados por efecto Doppler gravitatorio. Aún así, las imágenes son espectaculares. Interstellar presume de haber logrado las imágenes más realistas de un agujero negro que hemos visto en una película de Hollywood y supongo que será verdad. Algunas escenas de la película son de gran belleza. Me ha recordado a 2001 de Kubrick, aunque con un ritmo mucho más rápido, incluso más rápido que el de Gravity. La historia creo que aburrirá a pocos, aunque la película se hace muy larga con sus 169 minutos. Dos horas hubieran sido más que suficientes y la historia no perdería ni un ápice.

Gargantúa es un agujero negro supermasivo (su masa es de unos 100 millones de veces la masa del Sol) que está en rotación (su velocidad radial es del 99,8 % de la velocidad de la luz en el vacío). Cooper representa al espectador sin conocimientos en física y en la película varios protagonistas tratan de explicarle los conceptos básicos de la física de los agujeros negros en rotación, el horizonte de sucesos y la ergosfera, así como la diferencia entre la singularidad de un agujero negro de Schwarschild y uno de Kerr. Sin embargo, en mi opinión, las explicaciones son pobres (por no decir pésimas) y creo que pocos espectadores se enterarán de las sutilezas de la explicación (salvo que sean físicos y ya las conozcan). Este agujero negro presenta un sistema planetario con siete planetas. El más cercano al horizonte de sucesos, Miller, es un planeta con agua líquida en la superficie y una gravedad del 130% de la gravedad en la Tierra. Los protagonistas caen en una zona de aguas someras en las que caminan por las aguas sin necesidad de nadar. El planeta sería aburrido si no fuera por la presencia periódica de enormes olas. ¿Por qué hay enormes tsunamis? La verdad, al ver la película en el cine pensé que, como el agujero negro produce fuerzas de marea gravitatoria en el planeta y Ellos (o Thorne) han decidido que el público no lo va a entender, lo mejor es ilustrarlas con tsunamis. Por supuesto, esto no tiene ningún sentido físico. ¿Pueden las fuerzas marea gravitatorias ser tan intensas para producir enormes tsunamis sin destruir el planeta?

Volviendo a la física de los agujeros negros, el momento más interesante de la física de la película, y donde mejor se ve la mano de Thorne, es en la ilustración del concepto de dilatación temporal gravitatoria en el planeta Miller. Según el guión, una hora en Miller equivale a 7 años lejos del planeta (en la nave nodriza Endurance). Gracias a este guiño podemos estimar las propiedades del agujero negro Gargantúa. En la pizarra del profesor Brand claramente se observa la métrica de Kerr para una agujero negro en rotación y el correspondiente diagrama de Penrose. En esta métrica (con G = 1) el momento angular J está normalizado como a = J/(M c). ¿Puede un planeta presentar una órbita estable a esta distancia? La respuesta la ofrecen J. M. Bardeen, W. H. Press, S. A. Teukolsky, “Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation,” Astrophysical Journal 178: 347-370, 1972. Cuando el momento angular es máximo (a = M) hay órbitas estables que rotan en el mismo sentido que el agujero negro a partir de una distancia de Rs/2 (donde Rs es el radio de Schwarzschild) y que rotan en sentido opuesto a partir de 9 Rs/2. En el caso de Gargantúa (a ˜ M), la órbita del planeta puede ser estable (como cabe suponer sabiendo que Thorne es productor ejecutivo de la película).

Otra cuestión clave es la estabilidad del propio planeta debido al límite de Roche y al efecto de las fuerzas de marea gravitatoria (tidal forces). Este cálculo en relatividad general para un agujero negro de Kerr es muy complicado. El límite de Roche calculado con física newtoniana no tiene en cuenta la contribución a la gravedad de la presión de la materia (recuerda que la presión forma parte del tensor energía- momento y por tanto es fuente de la gravedad). Un cálculo teórico indica que una supertierra con una gravedad superficial de 130% la de la Tierra (unos 12,75 m/s²) podría ser estable (basta usar la fórmula (191) del artículo de Masaki Ishii, Masaru Shibata, Yasushi Mino, “Black hole tidal problem in the Fermi normal coordinates,” Phys. Rev. D 71: 044017, 2005; arXiv:gr-qc/0501084). Hemos de suponer que, de nuevo, Thorne conoce estos resultados y los ha usado para calcular las propiedades del planeta Miller; quizás, incluso, los ha mejorado. ¿Tienen sentido los tsunamis que se observan en el planeta Miller? La respuesta trivial es que las fuerzas de marea gravitacionales sobre una supertierra debidas a un agujero negro de cien millones de masas solares en rotación rápida son demasiado pequeñas para explicar los tsunamis. Sin embargo, esta respuesta no es del todo satisfactoria. Lo correcto sería usar la hidrodinámica relativista (Eric Gourgoulhon, “An introduction to relativistic hydrodynamics,” arXiv:gr-qc/0603009).

A priori se puede usar la aproximación de aguas someras (shallow water) para las ecuaciones de Navier-Stokes en el contexto de la teoría de la relatividad. Lo poco que he leído de hidrodinámica relativista no discute el efecto de las fuerzas de marea gravitatorias producidas por un agujero negro en rotación (solución de Kerr) sobre las ecuaciones de aguas someras y la posible producción de mareas enormes similares a tsunamis. La mayoría de los artículos se centran en la magneto hidrodinámica del colapso gravitatorio. En mi opinión no es fácil extender estos resultados al caso de la producción de enormes tsunamis. Lo más incomprensible del disco de acreción de Gargantúa es la fuente de la materia de dicho disco. Quizás hay una compañera, una estrella que no se observa en la película y que ilumina a los planetas (parecen muy luminosos). La materia del disco se acelera al acercarse al horizonte de sucesos, calentándose y emitiendo fuerte radiación (rayos X, radiación infrarroja y ondas de radio). Por cierto, la radiación de Hawking es despreciable porque la temperatura de un agujero negro supermasivo como Gargantúa es ridícula (unos 5 × 10–60 K). Esta radiación no se observa en la película pero podría afectar a los planetas e impedir su habitabilidad (que la película asume para el planeta Edmunds).

¿Podría sobrevivir Cooper a la singularidad del agujero negro? En principio, lejos de la singularidad las fuerzas de marea (responsables de la espaguetización) se pueden soportar, pero crecen sin límite conforme nos acercamos a ella. En el caso de la solución de Kerr la singularidad tiene forma anular, pero no parece razonable que una persona pueda sobrevivir en su entorno. Por supuesto, si Ellos son capaces de crear agujeros de gusano intergalácticos, también serán capaces de protegerle del intenso campo gravitatorio y de la espaguetización. Cooper en el interior de Gargantúa usa curvas espacio temporales cerradas para comunicarse con su hija. ¿Hay este tipo de curvas en el interior del agujero negro de Kerr? Sí, las hay, pero no son estables. Quizás Ellos, capaces de estabilizar un agujero de gusano, también son capaces de estabilizar estas curvas espaciotemporales cerradas. En cualquier caso, se trata de pura especulación. El guión se permite licencias literarias, muy al estilo de Nolan, cuya física no podemos comentar.

Por último, ¿podrían ser necesarios “datos cuánticos” para entender la gravedad cuántica? Quien sabe, quizás sí, quizás no. El profesor Brand y Murph parecen haber desarrollado una teoría cuántica de la gravedad con ciertos parámetros libres; quizás la única manera de concretar estos valores es obtener ciertos datos cuánticos cerca de la singularidad de un agujero negro de Kerr. Obviamente esto es pura especulación. De nuevo la historia al estilo de Nolan marca la física y no al revés. “Ellos” crearon el agujero de gusano, ¿Quién son “ellos”? Desde que contactan con la NASA se nos menciona que “Ellos” pusieron el agujero de gusano. ¿Quiénes son? ¿Son extraterrestres? ¿Por qué ayudan a la humanidad? Pero lo que está claro es que manejan la quinta dimensión. Al final de Interstellar dice que son los propios humanos del futuro los que han construido el espacio interdimensional donde las leyes del espacio y tiempo se vuelven infinitas. Así es como Cooper se puede comunicar con su hija a través de la biblioteca y el reloj. Él siempre fue el fantasma que mandaba mensajes a la niña. Pero ¿cómo los humanos del futuro pueden salvar a la humanidad si en el pasado necesitaron el agujero que ellos mismos han puesto? Esto es la mayor paradoja temporal que tiene la película.

Es decir, hay dos lineas temporales, la primera donde la humanidad avanza tanto en el futuro que domina la quinta dimensión y la segunda linea temporal donde la humanidad ayudada por los hombres del futuro puede salvarse. Esto significa que reciben un atajo a modo de agujero de gusano. ¿Cómo es posible? Puede que los humanos se quedaran en la Tierra y después de varias generaciones consiguieran mantener la vida bajo tierra o colonizar planetas cercanos y siguientes generaciones pudieran dominar la quinta dimensión y así poder ayudar a la humanidad en el pasado (podemos pensar en un millón de teorías, cada cual más fantasiosa). Esto es lo único que no se explica en la película y forma parte de la belleza de la historia que Christopher Nolan nos ha preparado para Interstellar.


sábado

RELATIVIDAD VS CUANTICA

La gran aventura de la Física actual consiste en hallar una formulación que combine las dos grandes teorías de la Ciencia: La Relatividad y la Mecánica Cuántica. Cuando se intentan unificar estas teorías, las soluciones se hacen infinitas, es decir, son no renormalizables.

Desde Einstein hasta Hawking, pasando por Edward Witten, los intentos han sido inútiles. ¿Será la Teoría de Supercuerdas, una complejísima estructura matemática, la que lo consiga?. Hasta que no se logre experimentar con ella, los científicos no pueden darle su aprobación, y se necesita tanta energía para conseguirlo que es más que probable que no se consiga hasta pasados varios siglos.


miércoles

¿UNIVERSO SIN PROPOSITO?


Lawrence Maxwell Krauss (27 de mayo de 1954) es Doctor en Física Teórica por el Instituto Tecnológico de Massachusetts y en la actualidad es Director del Proyecto Orígenes en la Universidad Estatal de Arizona. Anteriormente fue Profesor de Física Ambrose Swasey, Profesor de Astronomía y Director del Center for Education and Research en la Case Western Reserve University.

Tiene un amplio campo de intereses, entre los que cabe destacar la interacción entre la física de partículas elementales y la cosmología, donde sus estudios incluyen el universo temprano, la naturaleza de la materia oscura, relatividad general y la astrofísica de neutrinos. Además de afrontar desde una perspectiva física la pregunta por el origen del universo en su libro "Un universo de la nada". Krauss es autor de más de 300 publicaciones sobre ciencias y divulgación Científica,1 Especialmente en el área de física y astronomía. Además, es autor de varios libros de divulgación, entre ellos "The Physics of Star Trek", "Beyond Star Trek", "Miedo a la física" y "La quinta esencia". Su galardonado "Historia de un átomo: una odisea desde el Big Bang hasta la vida en la Tierra" ha sido traducido al alemán, italiano, holandés, portugués, finlandés, coreano y chino.

 El profesor Krauss ha recibido numerosos premios por sus investigaciones, entre los que cabe destacar el Presidential Investigator Award (1986), el Premio al conocimiento científico público de la Sociedad para el Avance de la Ciencia de EE.UU. (2000), el Premio Julius Edgar Lilienfeld de la Sociedad Norteamericana de Física (2001) y el Premio Andrew Gemant del Instituto de Física de EE.UU (2001). A menudo ofrece conferencias a públicos profesionales y generales, participando asimismo en programas de radio y televisión. Krauss es uno de los pocos científicos de reconocimiento internacional interesados en crear puentes entre la ciencia y la cultura popular.

martes

POLVO DE ESTRELLAS

Por sorprendente que resulte los átomos de nuestros cuerpos se crearon en el interior de una estrella, sometidos a inmensas presiones y enormes temperaturas, que resultan difíciles de comprender para nosotros. "Todos somos polvo de estrellas", la frase es de Carl Sagan. Y solo es poesía sino que resume el resultado de varios siglos intentando comprender el funcionamiento de las estrellas y la evolución del universo.

Todo empezó en el siglo XIX cuando los científicos empezaron a preguntarse de donde venia la energía del sol. Ninguna reacción química o proceso físico conocido podían proporcionar la energía necesaria durante el tiempo que llevaba existiendo nuestro planeta. Cuando se descubrió la fusión nuclear se comprendió el proceso que proporcionaba esa inmensa cantidad de energía a partir del hidrógeno. Y, como toda fuente de energía, generaba unos residuos a cambio. De hecho, el calcio de nuestros huesos, el hierro de la hemoglobina, el carbono, nitrógeno y oxigeno de los diferentes tejidos y células que forman nuestros cuerpos no existían al comienzo del universo.

En los cinco primeros minutos después de Bing Bang se formaron los primeros átomos, hidrógeno, helio y pequeñas trazas de deuterio y litio (podéis leer mas detalles en La Bella Teoría) Solo una mínima parte de los aproximadamente 115 elementos conocidos. Más tarde aparecieron las primeras estrellas que inicialmente tenían esa misma composición. Desde entonces diversos procesos de fusión, denominados nucleosintesis, han ido generando átomos cada vez mas pesados como el calcio o el hierro a partir de elementos menos masivos.

El problema es que las sucesivas reacciones de fusión cada vez aportan menos energía. Por encima del hierro, la fusión nuclear no produce energía sino que la absorbe. Para conseguir elementos más pesados se cree que hay dos procesos principales. Por un lado una supernova, es decir, la explosión de una estrella. La enorme energía liberada es canalizada, solo en parte, hacia la formación de núcleos más pesados. Átomos como el oro de nuestros anillos o el uranio de los reactores nucleares de fisión. Por otro la lenta absorción de neutrones por parte algunos átomos pesados va aumentando aun más su número atómico. Es un proceso lento que dura miles de años y que complementa al anterior. La suma de ambos métodos nos ha proporcionado anillos de oro, reactores nucleares y, sobre todo, elementos esenciales para la vida como el cobre, el zinc o el yodo. Necesitamos cenizas de estrellas para darnos la vida.

LOS VIAJES DEL APOLLO I

El Programa Apollo comenzó en julio de 1960 cuando la NASA anunció un proyecto, continuación de las misiones Mercury, que tendría como objetivo el sobrevuelo tripulado de nuestro satélite para localizar una zona apropiada con vistas a un eventual alunizaje de astronautas; se cumpliría así el viejo sueño del viaje a la Luna por parte del ser humano.

Pero los planes iniciales se vieron modificados en 1961 con el anuncio del presidente John F. Kennedy de enviar y depositar un hombre en la Luna, y traerlo de vuelta a salvo antes de que finalizara la década. La meta se alcanzó con 17 meses de sobra cuando el 20 de julio de 1969 Neil Armstrong y Edwin Buzz Aldrin a bordo de la Apolo 11 alunizaron en el Mar de la Tranquilidad. Este hito histórico se retransmitió a todo el planeta desde las instalaciones del Observatorio Parkes (Australia). Inicialmente el paseo lunar iba a ser retransmitido a partir de la señal que llegase a la estación de seguimiento de Goldstone (California, Estados Unidos), perteneciente a la Red del Espacio Profundo, pero ante la mala recepción de la señal se optó por utilizar la señal de la estación Honeysuckle Creek, cercana a Canberra (Australia).

Esta retransmitió los primeros minutos del paseo lunar, tras los cuales la señal del Observatorio Parkes fue utilizada de nuevo durante el resto del paseo lunar. Las instalaciones del MDSCC en Robledo de Chavela (Madrid, España) también pertenecientes a la Red del Espacio Profundo, sirvieron de apoyo durante todo el viaje de ida y vuelta.