domingo

EL NUMERO DE CHAMPERNOWNE


El número de Champernowne: 0,1234567891011121314151617181920212223.......................

Este número se obtiene concatenando todos los números naturales. Se sabe que es normal en base 10, pero no se sabe si lo es o no en otras bases.

Un número normal es un número real cuyos dígitos, en cualquier base, siguen una distribución uniforme, esto es, todos los dígitos son igualmente probables, todas las parejas de dígitos son igualmente probables, todas las ternas son igualmente probables…Cuando queremos referirnos a una base concreta b diremos que el número es cuestión es normal en base b. El concepto de número normal fue introducido por Émile Borel en 1909.

A la vista de esta definición podemos sacar varias cosas:

1.- En un número normal podemos encontrar todos los patrones posibles entre números; por ejemplo, si nos ceñimos a base 10, un número normal en base 10 contendrá en algún lugar de su expansión decimal a cualquier número natural que podamos pensar.
2.- Todo número normal debe ser necesariamente irracional, ya que si un número es racional tendrá un período y eso impide que haya equiprobabilidad.
3.- No todo número irracional es normal, ya que hay números irracionales en los cuales no aparece cualquier patrón de número naturales. Por ejemplo, la constante de Liouville 0.110001000000000000000001000

es un número irracional pero, evidentemente, no presenta todos los patrones posibles.

Después de la definición y de las observaciones iniciales viene la pregunta: ¿existen números normales? Y en ese caso, ¿cuántos hay? Vamos con las respuestas:

Sí, existen números normales. De hecho, casi todos los números reales son normales. El casi todos significa que el conjunto de los números reales no normales tiene medida de Lebesgue cero. Este resultado también fue demostrado por Borel, aunque su demostración es no constructiva. Fue Waclaw Sierpinski quien dio el primer ejemplo de número normal (no he podido encontrar de qué número se trata; si alguien lo sabe que lo comente). Por tanto hay muchísimos números normales. Sería lógico pensar entonces que es sencillo encontrarlos…nada más lejos de la realidad. Se conocen algunos, de otros se conjetura que lo son, hay más conjeturas sobre ellos, pero ni mucho menos es sencillo comprobar que un número irracional es o no es normal.

No hay comentarios: