A finales del siglo XIX los físicos estaban convencidos de haber desvelado los últimos secretos de la materia y no esperaban más avances en su disciplina. Pero seguía habiendo fenómenos que la física clásica no era capaz de explicar. Por ejemplo, la forma en que cambia el color de un objeto cuando se calienta. Bajo la llama de un soplete, un trozo de metal pasa del rojo al amarillo y luego al blanco, y después debería emitir luz ultravioleta, que nuestros ojos no pueden detectar. Entonces se volvería invisible. Pero esto nunca ocurre, porque en realidad emite mucha menos luz ultravioleta de lo que predice la teoría.
Fue esta anomalía la que puso a Max Planck, Premio Nobel de Física en 1918, pianista y profesor de la Universidad de Berlín, tras la pista de una nueva teoría que explicara el comportamiento de lo infinitamente pequeño. Frotándose los ojos y esperando equivocarse, Planck puso en ecuaciones y presentó en 1900 la hipótesis de que la energía (la luz es una forma de energía) no se emite de forma continua, sino en forma de pequeños paquetes, a los que llamó quantas. Algo así como el agua, que no fluye en un chorro continuo, sino solo en gotas.
Albert Einstein, Premio Nobel de Física en 1921, violinista y empleado de la Oficina Federal de Patentes de Berna, aprovechó este descubrimiento y en 1905 propuso su teoría del efecto fotoeléctrico. Partía de la base de que la luz no es una onda, como se creía hasta entonces, sino un haz de partículas, de quantas, que se denominarían fotones.
La segunda generación de físicos de principios del siglo XX -Niels Bohr, Louis de Broglie, Paul Dirac, Erwin Schrödinger, Wolfgang Pauli y Werner Heisenberg (todos ellos premios Nobel)- demostró que los fotones, electrones y otras partículas se comportan como pequeños granos de materia y como ondas a la vez. Se trata de una realidad inquietante, que llevó a Heisenberg a preguntarse si era "posible que la naturaleza fuera tan absurda como parece".
¿Y qué decir del famoso gato de Schrödinger, encerrado en una jaula donde puede estar vivo y muerto a la vez? Había que abrir la jaula para saber si el animal estaba vivo o muerto. Este experimento puramente teórico fue propuesto en 1935 por el físico vienés para demostrar que el mundo cuántico se basa en una suma de probabilidades. Sin embargo, solo sería factible si el gato fuera una partícula, no un ser vivo formado por unos cuantos miles de millones de átomos.
Como Max Planck al principio, o como Albert Einstein, Erwin Schrödinger solo se adentró en la física cuántica para demostrar sus carencias. Sin embargo, al final se convenció. Einstein, por su parte, siempre se mostró reacio a aceptar una teoría que dejaba tanto margen al azar y se basaba en probabilidades y estadísticas. Para él, el universo era totalmente descifrable y "Dios no juega a los dados", como le dijo a Bohr en 1927.
Por confusa que pueda parecer, por incómoda que resulte para los estudiantes que tienen que abordarla con una pizarra limpia, nadie ha podido jamás refutar la teoría cuántica. Nos ha permitido comprender cómo funcionan los átomos y, en gran medida, cómo se unen para formar moléculas, lo que ha abierto el camino a avances espectaculares, tanto en química como en biología. En tecnología, la comprensión de los mecanismos cuánticos nos ha permitido controlar el flujo de partículas (electrones o fotones) que hace funcionar nuestros láseres, radios, televisores, ordenadores y teléfonos móviles. De hecho, todos estos objetos aparecidos en la segunda mitad del siglo XX son ya tecnologías cuánticas.
Hace tiempo que se habla del ordenador cuántico. ¿Cuándo estará disponible en el mercado? Probablemente nunca, ya que los retos técnicos que plantea la construcción de una máquina así son enormes.
En un procesador cuántico la información se almacena en partículas, que se convierten en qubits. Sin embargo, son muy inestables, generan muchos errores y, para funcionar correctamente, la máquina debe estar completamente protegida de las vibraciones, los campos eléctricos o magnéticos y las fuentes de luz. Además, tendría que estar colocada dentro de un supercongelador, ya que su temperatura ideal de funcionamiento es cercana al cero absoluto (-273 °C). Solo entonces las partículas pueden permanecer lo suficientemente quietas como para ser "manipuladas".
A pesar de estas dificultades, todos los grandes países gastan miles de millones en investigación y desarrollo cuánticos. El tema está muy de moda. Los gigantes de la tecnología (IBM, Intel, Honeywell, etc.) y el comercio en línea (Amazon, Alibaba) también están invirtiendo en este campo.
Más que un ordenador completo (o incluso un portátil, que de momento es pura ciencia ficción), es más razonable imaginar procesadores cuánticos instalados en locales ad hoc que puedan ser interrogados a distancia a través de Internet. La supuesta potencia de cálculo de esas máquinas no sería de ninguna ayuda para la mayoría de las tareas que realizamos a diario en nuestros ordenadores, como teclear, enviar un correo electrónico, editar una foto, hacer un vídeo o navegar por Internet. Solo serían realmente útiles para operaciones muy complejas y específicas
No hay comentarios:
Publicar un comentario